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A General Existence and Uniqueness --Dustibatio

DistribtI M/
Theory for Implicit Differential-Algebraic Equations Availability Codes

Patrick J. Rabier and Werner C. Rheinboldt D~+ special
Department of Mathematics and Statistics

University of Pittsburgh, Pittsburgh, PA 15260 I id

Abstract: This paper presents a general existence and uniqueness theory for differential-algebraic equations ex-
tending the well-known ODE theory. Both local and global aspects are considered, and the definition of the in-
dex for nonlinear problems is elucidated. For the case of linear problems with constant coefficients the results
are shown to provide an alternate treatment equivalent to the standard approach in terms of matrix pencils.
Also, it is proved that general differential-algebraic equations carry a geometric content, in that they are locally
equivalent to ODEs on a Oconstraint" manifold. A simple example from particle dynamics is given to illustrate
our approach.

1. Introduction

Differential-algebraic equations (DAEs) are frequently identified as implicit equations

F (t, x, x') = 0 (1.1)

I for which the derivative x' cannot be expressed explicitly as a function of t and x (see e.g. [1]). In particular, if

x e R' and F maps into R', this includes the case when the partial derivative DF(t,x,p) ofF with respect

to its third variable p is not surjective. More specifically, in the setting of DAEs it is natural to require the

Sstronger hypothesis that D, F (t, x, p) has constant rank on the domain under consideration. Indeed, the proto-

type for such equations is given by

Sl(t,x)1
F(t, x, p)= F2(t, X, p 0  (1.2)

where F, and F2 map into RA" and R', respectively, and DvF 2(t,x,p) has full rank, so that, indeed,

ID, F (t, x, p) has constant rank r < n.

3 Many DAE-problems of practical interest do not exhibit such a convenient splitting between algebraic and

differential parts as in (1.2). Moreover, even if the equations can be written in the separated form (1.2), the rank

I of DpF 2(t,x,p) may turn out to be less than r so that F2(t,x,x')=O is an equation containing an implicit

31) This work was supponed in part by ONR-grant N-00014-90-1-1025 and NSF-grant CCR-8907654.
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algebraic part. While these comments suggest the need for a thorough investigation of DAEs in the broad setting

of (1.1), existence and uniqueness theories for these equations have not been developed in such generality and I
available results place more restrictive conditions on the form of F (see e.g. [4], [7],[8]).

In this paper we present existence and uniqueness results for general problems of the form (1.1) under

some "generic" conditions which do not assume that F has a special form. Briefly, our technique consists in 3
deriving a necessary condition for the existence of local solutions by differentiating the equation once followed

by an application of orthogonal projections onto the range of DpF to produce a system that again contains only I
x and x'. For this decomposed system a sufficient condition is then obtained that guarantees the equations to

define a local vector field to which the standard existence theory applies. The effectiveness of this conceptually

-- but not always technically -- simple approach for providing an answer to this notoriously complex problem

may be caUed surprising.

The sufficient condition essentially requires that the index (see e.g.[1]) of the DAE is one. But it also

tuns out that the theory can be applied recursively to equations of higher index provided that the resulting equa-

tions again satisfy the constant rank condition mentioned above. This is a requirement of a global nature not

covered by the standard index theories. In fact, it also suggests that the constant rank condition is inherent to the

definition of the index.

In Section 2 below we present the local existence and uniqueness theory sketched above. Then in Section 1
3 these local solutions are extended under conditions which corresnond to those of the standard ODE theory. In

Section 4 it is proved that when DF has full rank then the set of admissible initial points forms an r-

dimensional submanifold of R nx R A and the DAE is locally equivalent to a differential equation on an r- 3
dimensional submanifold of R'. This also shows that the geometric approach developed in (7] and [8] is con-

ceptually valid in general. Then in Section 5 we apply our results to linear equations with constant coefficients

and prove that the recursive application of the technique leads, exactly to the standard index for such linear

DAEs. Finally, Section 6 concerns the generalization of this recursive application of the results to the general

nonlinear case which, as mentioned before, requires the additional global assumption that the constant-rank con-

dition remains valid. This is illustrated on the classical example of the nonlinear pendulum.
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2. Local Existence and Uniqueness

For ease of notation, we shall considcr (1.1) first in the autonomous form

F(x, x') = 0 (2.1)

where it is assumed that

F: R' x R' -* R' is of class C 2 on the open set E: c R' x R" (2.2a)

and

rank D. F (x, p) = r < n, for all (x, p) r E. (2.2b)

Our results will show that the differcntiability assumption (2.2a) -- instead of the expected and apparently

more natural, minimal C '-regularity of F -- turns out to be important for the theory. We note also that the char-

acter of the problem changes significantly when, instead of (2.2b), DF(x, p) is only required to be singular on

some lower dimensional sub-manifold of R" R' (see [51). Finally, we observe that, while the rank condition

(2.2b) may suggest a transformation of the problem to some canonical form by means of a version of the rank

theorem" (see [3]), it must be noted that such a reduction mixes the variables x and p. Since in (2.1) the deriva-

tive x' occupies the position of the p-variable, such a reduction is not readily usable to transform (2.1) to an

explicit ordinary differential equation.

A C2 _-solution of (2 1) shall be any function

x: J -+ R' , (x(t), x'(t)) e E, for t e J, (2.3)

which is of class C2 on some open interval J c Rf and satisfies F(x(t), x(t)) = 0 for all t e J. For any C1 -

solution (2.3) of (2.1) we obtain by differentiation

D. F(x(t), x'(t))x'(t) + DoF(x(t), x'(t))x" (t) = 0, t e J, (2.4)

which provides the following necessary condition:I
Lema 2.1: If (2.2a) holds for (2.1) then for a given point (x, p) e £ the two conditions

I fF(X, p) = 0 (2.5a)
/ xF

3D F (x, p)p e rge D F (x, p) (2.Sb))
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are necessary for the existcnce of a C 2-solution (2.3) of (2.1) that passes through (x, p).

The two relations (2.5a/b) define a subset of possible initial points (x, p) of E. For a closer analysis of the

structure of this set we introduce the orthogonal projections

P: E -- L(R , R'), P(x,p) R = rge DF(x,p) , (x,p) e E (2.6a) I
Q: E -+L(R",R"), O(x, p) =I.- P(x, p), (x, p) e E. (2.6b)

These projections are Cl-functions of (x, p). In order to see this, let (xo, Po) E E be given and choose an ortho- I
normal basis (e1,.e,} of rge DPF(xo, po). Then there exist wi e R' such that e, = DtF(xo, po)wi and obvi-

ously for (x,p) near (x 0, p0 ) the mappings Tli, Tl(x,p)=DPF(x,p)wi,i = 1 ..... are of class C' and

(h(x, p)....T.lr(X, p)} are linearly independcnt. Hence, since rank DpF(x, p) = r, these vectors form a basis of

rge D.F(x, p). By applying the Gram-Schmidt process we obtain now an orthonormal basis of the same space

and, because the process involves only analytic operations, the vectors of this basis arc again C' functions of 5
(x, p). But then the same holds for the projection P (x, p) as the sum of dyadic products of the basis vectors

whence also Q = 4, - P is C 1. I
Evidently, the points (x, p) E E satisfying the necessary conditions (2.5a/b) are the common zeos of F 3

and the Cl-mapping

G : E -- R', G(x, p) =P(x, p)F(x, p) + Q(x, p)D.F(x, p)p, (xp) r E. (2.7) U
In other words, 3

EN = ((x,p) c E;F(x,p)=O,G(x,p)=O) (2.8) 3
is the set of all points in E that satisfy the necessary conditions of Lemma 2.1. For later use, note that the set

(x(t), x'(t)), t e ] lies in EN (and not only in F-1(0)) for every C 2-solution of (2.1). 3
A major step toward transforming (2.1) locally into an explicit ordinary differential equation will be pro-

vided by the following result about the relationship between the solutions of (2.1) and those of the equation

G (x, x') = 0. (2.9) 1
Below and in other instances, we shall use the remark that G (x, p) = 0 amounts to the fact that both terms on

the righthand side of (2.7) vanish.

I
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Lemma 2.2: Any C2-solution (2.3) of (2.1) solves the equation (2.9), and conversely, any C 2.solution (2.3) of

(2.9) for which F(x(tl), x'(t 1)) = 0 for some tr E J is a C2-solution of (2.1).

Proof: By Lemma 2.1 any C2-solution (2.3) of (2.1) satisfies F(x(t), x'(t)) = 0 and (2.4) for all t e J whence,

because of QDF =0 , we see that Q(x, x')D F(x, x')x' = 0 on all of J. This shows that x is a C-solution of

(2.9).

Conversely, suppose that (2.3) is a C 2-solution of (2.9). Then, on J the identity

dtdF(x, x)= [P(x, x)+ Q (x, x')][D.,F(x, xx +DpF(x, x"

Px x" )DFx X )X + Xp"x )X""] P],x ! ~,x

d

holds where we used that P + Q = I., QDPF = 0, and Q(x, x')D.F (x,x')x' = 0. By differentiation of the

identity P (x, x')F (x, x') = 0 (see (2.7) and (2.9)) it follows that

P(x, x) -!- F (x,x') = - P(x, x') F(x, x'). Hence the function k:J -+ R, (t)=F(x(t),x'(t))
di di

satisfies the linear system -d = A (t), where A: J - L (R"), A (t) = - P (x, X') (t) is a continuous

function since the projection P is C 1 on E and the solution x is C 2 on J. Hence the standard uniqueness theory

for linear systems 2) together with the condition F(x(t1), x'(t)) = 0 implies that F(x(t), Y(t)) a 0 for t in a

neighborhood of t in J. Because of the connectedness of J it follows readily that this local result holds for all

t e J. Thus x is a solution of (2.1) on J as claimed.

In order for the equation (2.9) to induce a unique vector field on some neighborhood of any given point

(xo, P0) e ENv, we need to guarantee that for each x near x0 there exists only one vector p near Po for which

G(z,p) =0. Obviously, a sufficient condition for this will be that D.G(xo, po) is an isomorphism on R.

3 Accordingly, we define the set of admissible initial lNints of (1.1) in E as

EA = [(x, p) r EN; DpG(x, p) e Isomr ) } . (2.10)

2) We emphasize that continuity of A with respect to t is sufficient to guarantee uniqueess, u a straigstforwwud
verfcation cofirms.
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Clearly, by the continuity of D.G, the set EA is (relatively) open in EN. Moreover, note that when

(xo, Po) E EN. tiLcn, by (2.Sb), there exists a qo E R' such that I
D.F (xo, po)Po + DPF(xo, po)qo = 0. (2.11)

The following lemma provides a characterization of EA in terms of F and its derivatives. For a somewhat

related condition in the quasilincar case see also [2]. I

Lemma 2.3: For any (Xo, Po) E E.v we have DpG(xo, Po) e Isom(R') if and only if for some qo which satisfies l

(2.11) the following condition holds

u k ker D.F(xo, p0 ) and DX,,F(xo, po)(po, u)+D 2 F(xo, po)(qo, u)+DF(xo, po)u e rge DF(xo, po)

together imply that u = 0. (2.12)

This equivalence does not depend on the particular choice of qo satisfying (2.11).

Proof: Evidently, for any u E R ', we have

DpG(x, p)u = KI(x, p, u) + K(x,p, u)

where

K 1(x, p, u) E DP [P (x, p)F(x, p)lu = [DP(x, p)uiF(x, p)

+ P (x, p)DF(x, p)u -[DpP(x, p)u]F(x, p) + DpF(x, p)u (2.13)

and

K2(x, p. u) - Dp [Q (x. p )O F (x, p )p ]u. (2.14)

The condition (xo, po) e EN implies that F(xo, Po) = 0 and hence by (2.13) that

K1 (xo, Po, u) =DpF(xo, po)u. (2.15) I

For the evaluation of K 2 note that for any fixed q e Rn and by definition of Q it follows that

Q(x,p)D.F(x,p)p =Q(x,p)[DF(x,p)p +DF(xp)q],

and therefore that

3) Hem D.,F (xo, po)(Po, u) mcans D F (xo, po)((po,O),(Osu)) and hence po And U do not play rinu Iic
mhksI
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K 2 (x, p, u) = (DQ(x,p)u)(D.F(x,p)p + DPF(x,p)q)

+ Q(x, p)[D2'PF(x, p)(p, u) + DF(x, p)u + D2,F(x,p)(q, u)].

Now with any point q0 ( R^ for which (2.11) holds we find that

K2(xo, po,u) = Q(xo, po)[DPF (x 0,po)(po, u )+Dp ,pF (xo, po)(q0 , u)+D.F(xo,po)u]. (2.16)

Together, (2.15) and (2.16) show that K 1(xo, po, u) and K 2(xo, Po, u) are the components of the vector

DpG(xo, Po)U along rge DpF(xo, Po) and its orthogonal complement, respectively. This implies that

DpG(xo, Po)u = 0 if and only if

G Kl(x 0 , P0, u) = 0 and K2 (xo, Po, u) = 0. (2.17)

Thus D.G(xo, po) is an isomorphism exactly if (2.17) holds only for u = 0 which by (2.15) and (2.16) is

equivalent with (2.12). The last part of the lemma now is a direct consequence of the fact that the invertibility

of D.G (xo, P) is independent of the choice of q0.

As an immediate corollary of Lemma 2.3 we obtain from (2.10) and the implicit function theorem the fol-

lowing result:

Lemma 2.4: For any (xo, Po) E EA there exists an open neighborhood Uo x Vo c E and a unique CI-mapping

(V: U0 -+ V0, 0D(xo) = Po, such that (x, p) e Uo x Vo and G(x, p) = 0 if and only ifp = 0(x).

Lemma 2.4 shows that for any initial point (xo, Po) e EA there exists an open neighborhood

Eo = Uo x Vo in E where the system (2.9) can be written in the explicit form x' = 0(x). Hence the standard

theory for initial value problems ensures that, modulo translations in time, this explicit system has a unique solu-

tion x in Uo through any given point of that set, and clearly this solution is of class C 2 since 40 is C1. It follows

that for any given point of E0 the system (2.9) has a unique C2 solution x such that (x, x') passes through that

point of E0. Now Lemma 2.2 asserts that such a solution is a solution of (2.1) if and only if (x, x') passes

through some point of EN. Thus we conclude that (2.1) has a unique C 2 solution for which (x,x') passes

through any given point of Ey (- E0 . As noted earlier, EA is open in EN and, clearly, for sufficiently small Er

we have EN (-) Eo = EA n" E0. Thus, in particular, the result applies to the given point (xo, po) G EA.
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We summarize this conclusion in the following form:

Theorem 2.1: Suppose that for the problem (2.1) the conditions (2.2a/b) are valid and choose any to e R. Then,

(xo, Po) e Ev is necessary for the existence of a C2-solution of the initial value problem

F (x, x') = 0, x(to) x0 X,(to) = Po . (2.19)

Moreover, if (xo, Po) E EA then there exists a unique C2-solution of (2.19).

Note that the theorem does remain valid when r = n in (2.2b). In that case we have rge DF(x,p) = R

for all (x, p) E E and hence the necessary condition (Xo, Po) E EN simply is F(xo, po) = 0 while the sufficient

condition (x0, Po) e EA reduces to F(xo, Po) = 0 and ker DPF(xo, Po) = (0). Thus we recover here the usual

situation when the implicit funcion theorem provides that (2.1) can be written locally as an explicit ODE. In

this case, it is of course sufficient that F be of class C' on E since the second derivatives of F are no longer

involved in the definition of EA.

Similarly, the extreme case r = 0 in (2.2b) is trivial since then D.F(x,p) = 0 for (x,p) e E; that is, F

is independent of p. Here we have (xo, Po) E EN if and only if F(xo) = 0 and D.F(xo)po = 0 while

(xo, Po) e EA under the additional requirement that DF is at xo an isomorphism of R" to itself. But then the 3
equation F = 0 has xo as isolated solution and the unique solution of (2.la/b) is x(t) = xo. This is consistent

with the remark that if D.F(xo) is an isomorphism, then D.F (xo)po = 0 only if po = 0. 3
We end this section by considering the conditions (xo, po) e EN and (xo, Po) e EA of Theorem 2.1 for

the general nonautonomous case (1.1); that is,

F(txx')= 0, x ) =xox'(to) =po, F(toXo,po)=O. (2.20) 1

We use the standard approach to make this problem autonomous and hence introduce the mapping 3
H: (Rx R')x(Rx R')-. R 11+ I((t, xj) (, p)) = F (t. (2.21) 1

and the corresponding initial point ((to, xo), (co, p0)), to = 1. Then, under the required smoothness assumptions

the condition (2.5b) for H, written in terms of F. assumes the form I
D,F° + DFpoe rge DF °  (2.22) 1

1
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while the condition (2.12) becomes

I for qo e R" such that DF°+D F~po+DPFoqo = 0,

u E ker DPF ° and

D F~u+ DX',F 0 (po, u)+DppF°(qo, u)+DxFou r rge DF °  (2.23)

together imply that u = 0

I In (2.22) and (2.23) the superscript 0 indicates that the particular function is to be evaluated at (to, x0, pa). Note

also that in (2.22) and (2.23) we explicitly used 'to = 1 and that the condition (2.23) is independent of the

specific choice of qo.I

I 3. Global Behavior of the Solutions

In order to determine the global behavior of the local solutions of the initial value problem (2.19) suppose

again that the conditions (2.2a/b) hold. Then Theorem 2.1 guarantees the existence of a unique C 2-solution (2.3)

3 x for which (x, x') passes through any given point of EA. For any such solution and any y e J we introduce the

sets T. = (p r RR;p =x'(t), y<t <b} and T..= (p e R";p =x'(t), a <t <y). Then the following

I extendability result holds:

Theorem 3.1: Assume that for the problem (2.1) the conditions (2.2a/b) hold and that EA = EN. Then the follow-

ing statements are valid:

(i) If the set T.. [or Tr._] is bounded for some y e J, then lim,, x(t) = Xb [or lim,.., x(t) = x.] exists.

(ii) If lim . xQt) = Xb [or lim.. x(t) -x.] exists and for some sequence {tk) J with liMn.j.It = b [or

imk..tk = a) the sequence {x'(tk)) has an accumulation point p* for which (x,p*) e E [or

I (x, p*) e E] then lim,..,_ x'(t) = p* [or lim... x'(t) = p* ] and for b < @ [or a > --*a] the solution x

can be continued to the right of b [or to the left of a]:

Proof. We present the proof only for the right endpoint b, for the other one it proceeds analogously. Suppose

3 first that T, is bounded for some ye J and hence that I1'Q)1 <5 M < - for t C J7 = [y, b). Since

IIx(t) - x(s)1 I 1 iIx'(,r)ld'tI 1 M It-sI , for all st e fI.
!I
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we see that for any sequence {tk} c J', with limk ,,-b the sequence (x(tk)l is a Cauchy sequence, and

moreover that its limit is independent of the particular choice of (ti 1. This proves the existence of the limit

point Xb.

Now assume that lim,.b- x(t)= Xb exists and that for some sequence [tk} J with limh.. .tt = b the

sequence (x'(tk)} has an accumulation point p* for which (xb , p*) e E. Then there is a sub-sequence

{sk) c (tk) for which limk....sk = b as well as limk...,x'(sk) =p*, and, because of F(x(sk), X'(sk)) = 0 and

(xb, p* ) E E, we also have F (xb, p*) = 0. As in the previous section, for all (x, p) near (xb, p* ) let Q (x, p)

be the orthogonal projection onto [rge DP F (x, p)?V. Recall that Q is continuous (even C'). Hence, from

D.F(x(sk), X'(Sk))X'(Sk) E rge DPF(x(sk), X'(Sk)) (see Lemma 2.1) it follows that Q(x(sk), x'(sk))DZF(x(st),

x'(Sk))Xg (sl) = 0 for all k and therefore, in the limit, that Q(xb,p*)DZF(xb,p*)p* = 0. In other words,p* is a

solution of the system

F (xb, p) = 0 , D F (xb, p )p rge D F (xb, p) . (3.2)

Since (Xb, p* ) E E it folows that (Xb, p* ) r EN = EA and thus, by Lemma 2.3. that the solution p = p* of

(3.2) is isolated. In other words, there exists a ball B 8 c R" centered at p* with radius 8 > 0 such that

(Xb, p) E E, for all p r B6, and that B8 contains no solution p of (3.2) other than p*.

Consider now any sequence {'tk} r J with lim.,tk = b. We show first that x'(tk) must have an accu-

mulation point. Suppose that this is not true, so that limk..,.llx'(Tk)l! = oc. Because of Iimk_...x'(sk) = p* it there-

fore follows that for some sufficiently large k0

ILX'(' ) - x' (s,)l &2, for k a ko. (3.3)

By continuity and the intermediate value theorem there exists in each interval [i4f(Ttr, s,), sup(%8 , s$)1 a value

Pk such that lIx' (P ) - x" (sk)ll = /2. Then, x' (Pk) is bounded and upon extracting a subsequence, we obtain an

accumulation point pP of x'(pk), which, of course, satisfies lpP - p* ii = &2. But this means that pP e B& and

pP *p* which is a contradiction because (Xb, pP) e E, limk....pk = b and hence pP is a solution of (3.2).

Therefore x' (k) must have an accumulation point. Suppose there exists such an accumulation point p** which

is distinct from p*. If (xb, p**) e E then, as before, p** must solve (3.2) and hence cannot be in B&. On the

other hand, if (xb, p**) does not belong to E then necessarily, p** cannot be in B& either. There is some sub-
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sequence, to be denoted again by ft 1, whikh converges to b and for which lim, x'(,)= p**. As p** is

5 not in B8, the relation (3.3) must be valid for sufficiently large ko which, of course, leads once more to a con-

tradiction. Thus, altogether, we have found that p* is the unique accumulation point of the sequence (x'(',r))

I for any sequence (tk ) E J such that limk._. tk = b. This proves that limf..b X'(t) = p*.

3 Since p* solves (3.2) we have (Xb, p*) E EN and, by hypothesis, Ev = EA. Hence, for b < - we can

apply Theorem 2.1 at (xo, Po) = (xb, p*) with to = b. Thus there exists some neighborhood Eo c E of (Xb, p*)

5 and some open interval I containing b where the C 2-solution y: I - R' y(b) =xb, y'(b) =p*, of (2.1a) is

the only solution of an explicit system y' = ((y), x(b) = Xb, with some C'-function 0 on E0 for which

4D(Xb) = p*. By the standard uniqueness theorem it follows that any "one-sided" Ct-solution

5 4: (b - E, b] -- R' with ("-(t), '(t)) E E0 , b - F < t < b, of this explicit problem necessarily has to agree

with the unique C 2-solution y of the problem on their common interval of definition. But because of

lim4...-x(t) =xb, and lim_. _x'(t) =p* our given solution x is such a one-sided Cl-solution and hence

agrees with y on their common domain. This shows that the original solution indeed can be continued beyond

I the right endpoint b of J and the proof is complete.

The result implies that any local C2 -solution of (2.1a) can be extended to some open interval

J = (a*, b*), b* S 0-, a* _ -c, which is maximal under set inclusion.

I Now consider Theorem 3.1 in the case E = R'x R'. If limx..,bX() =xb exists, then any accumulation

pozntp of x(t) as t -+ b- in R' necessarily satisfies (Xb,p) E E and we have lim,_.b_ (t)=p. Clearly, if

T,, is bounded then there must be such an accumulation point; in other words, for bounded T. both limits

5 lim-..bx(t) and lim._ x'(t) always exist and the solution can be extended. Suppose now that b = b* < a

which implies that the solution cannot be extended. Then T.,, must be unbounded. Moreover, if

5 lim ..,_ x(t) = xb exists then x'(t) cannot have an accumulation point as t -+ b- which means that

l IIx'(t) = @0. The analogous result holds at a* and altogether we have the following corollary of

I Theorem 3.1.

3 Theorem 3.2: Assume that the mapping F of (2.1a) satisfies the conditions (2.2a/b) and (3.1) on E = R4 x R4

and let x: J-+ RA, (x(t), Z (t)) e E for t e J, be any C2-solution of (2.1 a) where J - (a*, b*) is a maximal

I interval. If b* < then the set T,. is unbounded for some, and hence all, y e J, and, in particular, if

I
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lim,_.._ x(t) exists then lim,.,b._ x'(t)l = o. Correspondingly, for a* > - the set T. _ is unbounded and, in

particular, if lim,.. x(t) exists then lim,_a.. lIx'(t)ll = 00. U
I

4. The Structure of the Set of Admissible Initial Points

In this section we analyze the structure of the set EA of admissible initial points of (2.1) in E as well as

that of its projection onto the x-space. For this, we assume that, in addition to the properties (2.2a/b) the map- 3
ping F satisfies

rank DF(x,p) = n, for all (x,p) E E; (4.1) I

that is, that the equations (2.1) are independent.

We prove first the following preliminary lemma: I
Lemma 4.1: Suppose that F satisfies the conditions (2.2a/b) and (4.1). Then the mapping QF: E -+ R' has at

any point (x, p) e F - 1 (0) the partial derivatives 3
D.(QF)(x,p)=Q(x,p)D.F(x,p), D,(QF)(x,p)=O. (4.2) 3

Moreover, the linear map Q(x, p)DF (x, p) r L(R') has constant rank n-r on all of F-'(0). I
Proof: Let (x, p) E F-1(0). For any u E R" we have

D.[tQ(xp)F(x.p)]u = (D.Q(x,p)u]F(x,p)+Q(x,p)D.F(x,p)u I
which implies the first part of (4.2) while, because of QDpF - 0, the second part is a consequence of

Dp[Q(x, p)F (x, p)]u = [DpQ(x, p)u]F (x, p)+Q(x, p)DF(x, p)u.

By (4.2) we see that Q (x, p)D.F (x, p) =Q (x, p)DF (x, p) and, because DF (x, p) has full rank, that

rank Q (x, p )DF (x, p)= rank Q (x,p) = n-r. This proves the second part of the assertion. 3
With this we obtain now the following result about the structure of EA:

Theorem 4.1: Suppose that F satisfies the conditions (2.2a/b) and (4.1). Then the set EA c E of admissible ini-

tin! points of (2.1) is an r-dimensional C 1-sub-manifold of R" x Rm . 3
I
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Proof: Let (xo, Po) r EA., so that F(xo, Po) = G(xo, Po) = 0 and DPG(xo, po) e Isom(R ). Since the condition

3 DwG(x,p) E Isom(R ) is fulfilled by all points (x,p) e E near (xo, p0 ), the points of EA in the vicinity of

(xo, Po) are characterized by the sole conditions F (x, p) = G (x, p) = 0. Actually, this system may be replaced

I by

G*(x,p)-(Q(xo, po)F(x,p), G(x,p))=O.

Indeed, it is obvious that G*(x,p)=O whenever F(xp)=G(x,p)=O. Conversely, suppose that

G*(x,p)=O, so that Q(xo, p0)F(x,p)=0, G(x,p)=O. The latter relation implies in particular that

P(x,p)F(x,p)=0, which, together with Q(xo, po)F(x,p)=O yields F(x,p)=O because

rge Q(x,p)= [rge DpF(x,p)? and rge P(xo,po)=rge DpF(xo,po) remain complementary for (xp) close

3 enough to (xo, Pa) (by constancy of rank DF and continuity of P and Q on E; see Section 2).

Identifying rge Q (xo, po) = R", we see that the mapping G* maps a neighborhood of (xo, po) in

R'x R" into the fixed space R"-x R', and with F(xo,po) = 0 and QDwF = 0, that

[Q (xo, po)D F (x0, p0) 0 (4.3)DG* (Xo, Pa) = [D G (x0, Po) DPG(xo,Po)"

I Recalling that DG(xo, po)e Isom(R") and from Lemma 4.1 with (xp)=(xo, po), we conclude that

D, G*(xo, Po) maps onto R"-'x R'. The implicit function theorem now ensures that (G*)-'(0), and hence EA

is a r-dimensional C1 sub-manifold of R'x R' in the vicinity of (xo, po). This completes the proof since

l (xo, Po) was an arbitrary point of EA.

Let II : R'x R - R" be the projection onto the first factor and let (xo, p) e EA. It follows from the

I proof of Theorem 4.1 that the tangent space T( ,, poEA may be identified with the null-space of the mapping

DG*(xo, Po) in (4.3). Thus, for given (u, q) e T(x,) PEA, one has fl(u, q) = u and hence fl(u, q) = 0 if and

only if (u, q) = (0, 0). This means that the restriction of rl to the manifold EA is an immersion at (XO, p). It

follows that there is an open neighborhood N o of (x0 , Po) in EA such that Mo = u(o) is an r-dimensional C'

sub-manifold of R^ and H :N o -+ M0 is a C'-diffeomorphism. We are now in a position to prove that,

I locally, the DAE (2.1) is equivalent to an explicit ODE on the manifold Mo

3 Theorem 4.2: There is a neighborhood E0 = U0 x Vo c Rnx R' of (xo,po) e EA and a C1 vector field

I
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0: Uo M 0 -+ R n , d(x 0)=po, with O(x)e T,1 Mo, for x e U 0  Mo, such that x :J -.*R is a C2-

solution of F(x, x') = 0 satisfying (x(t), x'(t)) E o, for t E J, if and only if x(t) e Uo r) Mo,

x'(t) = O(x(t)),for alit E J.

Proof: Lemma 2.4 has already established existence of a neighborhood E0 = U0 x Vo and Ct-mapping

0: U0 -4 R, D(xo) = po, such that (x, p)E Eo and G (x, p) = 0 if and only if x • Uo and p = 0(x). More- 3
over, it was also shown that x: J -+ R' is a C 2 solution of (2.1) satisfying (x(t), x'(t)) e E0 if and only if

x(t) e U0 , x'(t) = 0(x(t)), for all t E J, and (x,x') passes through one point of EN (so that, in fact, (xx')

lies entirely in EN).

Clearly, the neighborhood E0 = U0 x Vo can be shrunk to arbitrarily small size with no prejudice to the

mentioned properties. One may then assume that No = oE(- EA = E0 - EN in the discussion preceding the

theorem. In this case, Mo = r7(No) c U0 so that U0  Mo = Mo.

Since the curve (x, x') lies in EN whenever x is a C2-solution of F(x,x') = 0, it follows that x(t) e Mo

as soon as (x(t), x'(t)) E E0 . To prove the theorem, it suffices to show that 1
(a) x E Mo implies (x, 0(x)) E No,

(b) x E M 0 implies 0(x)) TM 0 c R.

If (b) is assumed to hold then, (a) is needed to show that for any (automatically C2) solution x: J -+ Mo

to x' = 0(x) the curve (x, x') lies in No c EN and hence is a C 2-solution of (2.1). But (a) holds since every

x e Mo has the form x = fl(x, p) with (x, p) e No c E0 , whence p = 0(x).

To prove (b), we shall use a characterization of the points of No that is slightly different from that

involved in the proof of Theorem 4.1: Note that (x,p) e No if and only if Q(x,p)F(x,p)=O and

G(x,p)=O since P(x,p)F(x,p)=O is already ensured by the second relation and since 3
DG(x,p) e Isom(R') is guaranteed by the hypothesis E o q EN =E 0 (-'EA (=No). Since (x,p)rc E, we

see that G (x, p) = 0 is equivalent with x e U0 and p = 0(x) and hence (x, p) e No if and only if x E U0 and I
H(x) = 0 where we have set

If(x) Q(x, (x))F(x, (x)) ,x E Uo.

Using (a), one finds at once that Mo = 11- 1 (0). In turn, this shows that for x e Mo, the space T Mo identifies
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with ker DH(x). Because of 11(x) = 0 we have (x, (D(x)) r No c EN c F-1(0) and, with the help of Lemma

4.1, an elementary calculation yields

D(x)u = Q (x, 'D(x))DF (x, ',(x))u

for U E R". Letting u = (,(x), we find that b(x) E ker DH(x) = T1,M 0  because

Q (x, tD(x))D.F (x, 't(x))cD(x) = 0 follows from G (x, O(x)) = 0. This completes the proof of Theorem 4.2.

Remark: In the proof of Theorem 4.1, the projection Q(xo, po) cannot be replaced by Q(x,p), for rge Q(x,p)

varies with (x, p) and the resulting mapping G* must be viewed as taking its values in Rx R instead of

R"'x R', and the implicit function theorem cannot be used. Neither can the rank theorem be applied since

there is no guarantee that rank DG*(x, p) = 2n-r for (x,p) near (xo, po) but not on EA. On the other hand,

Q (xo, po) cannot be substituted for Q (x, p) in the proof of Theorem 4.2, for it would become impossible to

take advantage of Lemma 4.1 with (x, p) * (x0, Pa).

As in [7] the local result in Theorem 4.2 may be globalized to some extent by applying the theory of cov-

ering spaces. We sketch only briefly the general approach. Clearly, the local result shows that the restriction

A zI I EA is a local homeomorphism between EA and HA EA. Let E be some non-empty, arc-connected sub-

set ofEA for which (E,, Fl;), 171; = I IE,;, is a covering space of IE;. In other words, each point x e rIE,$ is

assumed to have an open, arc-connected neighborhood U such that each arc-component of (fl'(U) is not

empty and is mapped topologically onto U by flT. Often it turns out that EA' = EA can be used. This is certainly

the case when, for fixed x r rIEA there are only finitely many p such that (x. p) e EA. In general, it is always

possible to choose E; as the closure of a non-empty, pre-compact, (relatively) open, and arc-connected submani-

fold of EA.

For any given (xo, po) e E; let now M be a non-empty, (relatively) open, simply connected subset of

flEA that contains x0 . For any x e M choose a path 4: J -. M which connects x0 with x. Then the exists a

unique lifting 4": J -+ EA with initial point (xo, po) for which fl" = 4. This lifted path las a unique endpoint

(z,p) in EA since all paths in M between x0 and x are homotopic. Since x was arbitrary in M our above local

result can now be used to prove that M indeed is an r-submanifold of R' and that the DAE (2.1) induces a

tangential vector field on M for which all integral curves in M are solutions of (2.1).
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5. The Linear Case With Constant Coefficients

In this section we apply our results to a non-autonomous linear problem with constant coefficients

Ax' +Bx =f, (5.1)

where f = f (t) is assumed to be as smooth as necessary and

A,B e L(R', R'), rank A =r <n . (5.2)

These linear problems probably represent the most extensively studied DAEs in the literature, (see [1],[4]).

For (5.1) the necessary condition (2.22) becomes

Bx -f" e rge A (5.3)

while the sufficient condition (2.23) has the form

Au =0 and Bu e rge A imply u =0. (5A)

It is well-known (see e.g. [1]) that (5.1) is uniquely solvable for compatible initial data if and only if the

matrix pencil (A, B) is regular; that is, exactly if there is some X e R such that B + A1A is invertible. A central

concept in the solvability theory of (5.1) is the index of regular pencils. For regular (A, B) choose any X for 3
which B + A is invertible. Then, the index is the smallest integer K (< n) such that

ker [(B + A)'A ] + = ker [(B + X))'A ]) (5.5)

It can be shown that K is independent of the choice of X (see (4, App. A]), and it is also readily checked that

K = 0 if and only of A is invertible.

In order to relate our theory to this index-concept, let P e L(R4) be the orthogonal projection onto

rge A and Q ,- P. As in Section 2 our first step is to differentiate the DAE (5.1) and then to multiply the

resulting equation Ax" + Bx' = f' by Q in order to remove again the second derivative of x. Together with the

projection of the original equation onto rge A this produces the system

PAx" + PBx = Pf , QBx' = Qf. (5.6)

Since P and Q map onto complementary spaces the two equations (5.6) can be added which results in doe

reduced DAE

I
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Aix' + B lx = 1 (5.7a)

where, because of PA = A,

A =PA +QB =A +QB, B=PB, f=Pf +Qf'. (5.7b)

In Section 2, (5.7aib) corresponds to (the non-autonomous version of) (2.9) and thus the results of that section

can be applied. We concentrate here only on the effect of the sufficient condition (5.4). Even without recourse to

the earlier theory, it is readily checked that (5.4) is equivalent with A1 E Isom (R') and, hence, that when (5.4)

holds then (5.7a/b) can be transformed into an explicit ODE.

Suppose therefore that A1 is singular. Then we may apply the same procedure repeatedly as many times as

necessary, to obtain a sequence of DAEs of the form

Ajx' + Bjx = fj (5.8a)

where Aj, Bj, fj are specified recursively by A0 = A, B0 = B, f 0 = f and

Aji = PAj + QBj, Bj. 1 = PjB1 , fj.1 = PfJ + Qjf'j, (5.8b)

and Pj is the orthogonal projection onto rge Aj and Q, = I. - P. The process stops with the smallest integer k

such that Ak, is invertible; that is when the sufficient condition (5.4) holds for Ak and Bk. Explicitly. this condi-

tion has the form

SAkuo = 0 and Bkuo e rge Ak imply u0 = 0. (5.9)

3In terms of the original matrices A and B of (5.1) the condition (5.9) turns out to be equivalent with the

condition

Auo = O, Bu i = Auj.1, j=O,l ..., k, implies uo = 0. (5.10)

I The proof will follow by repeated application of the following result where, for ease of notation, the mauices

A, B now stand for any Ai, B,:

Lemma 5.1: Let A, B be any n xn matrices and, with the orthogonal projections P and Q -1.-P onto rge A

and (rge A)-, respectively, set A I = PA + QB = A + QB, B I = PB. Then, for any k > 1 the equaions

3 Au0 = 0, Bu, = Auj. 1, j=0..., k (5.11)
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have a solution uo,.... if and only if u, .... u solve the equations

Al u o= 0 , B ul = A lu,., j=O .... k-1. (5.12)

In particular, if for all solutions of (5.11) we have uo = 0, then the same must hold for all solutions of (5.12).

Proof: Suppose that Uo .... uk.1 solve (5.11). Since QA = 0, multiplication of Buj = Auj+1 by Q shows that

QBuj = 0 for] = 0,...,k. Hence, for ] = 0,...,k-I we obtain

B uj = PBuj = PAuj+l = PAuj+l + QBu+l = Atu,+i

and, since Auo 0,

Aluo = PAuo + QBuo =PAuo = 0,

so that uo ... .u solve (5.12). A

Conversely, assume that the vectors uo .... uk, solve (5.12). In terms of A, B the equations (5.12) assume

the form

Auo + QBuo = 0 (5.13a)

PBuj =Au+ l + QBuj+1 , j = 0,.... k-1 (5.13b)

where we used that A1 = A + QB. Since Q maps onto a complement of rge A, both terms on the left of (5.13a)

have to be zero; that is, we have Auo = 0, and QBuo = 0. By multiplication of (5.13b) with Q it follows that 3
QBujl = 0 and hence altogether that

Buj+l = PBuj+,, j = 0,..., k-1. (5.14)

Now, by multiplying (5.13b) with P and using (5.14), we obtain Buj = PBuj - PAuj,t - Auj+1 for

j = 0,.... k-1. On the other hand, (5.14) for j = k-i shows that Buk e rge P =rge A and thus that

Bu = Auhl for some vector uh+t. This completes the proof.

For the proof of the equivalence of (5.9) and (5.10) we begin by applying Lemma 5.1 to (5.9) which

cofresponds to (5.12) for A - A&-,, B = Bk-j. Hence, we conclude that the validity of (5.9) is equivalent with

the condition that

A&,-tuo = 0, Bk..Uo = Ak.u 1. B*..u 1 - Ak-Iu2 (5.15)
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implies Uo = 0. Evidently (5.15) is (5.12) for A = Ak_ 2, B = Bk-2 and thus the lemma can be applied again. In

3 other words, by repeating the process we arrive after k-i applications of Lemma 5.1 at the condition (S.40)

which then completes the proof of the equivalence of (5.9) and (5.10).

As before, let now k be the smallest integer for which (5.9) holds; that is, for which Ak+1 is invertible. If

3 no such integer exists we set k = cc. Then for k < 0 the system

Ak+lx' + Bk+lx =fk+, x(to) = xo

has a unique solution which, from our theory, is a solution to (5.1) if and only if Ajpo + Bjxo = fj (to),

3 j = 0, • • • , k, where P0 is characterized by Ak+Lpo + Bk+lxo = fk+l(tO).

This solvability result raises, of course, the question how our condition (5.9) (or (5.10)) relate to the regu-

I larity and the index K of the matrix pencil (A, B). This is answered as follows:

Theorem 5.1: If the matrix pencil (A, B) is regular and rank A < n (so that x ? 1) then k = x-1 and hence

k < a*. Conversely, if k < ** then (A, B) is regular and hence k = K-1 if rank A < n.

Proof: Let (A, B) be regular and choose X such that C = B + X4A is invertible. Then the index K is defined as

I the smallest integer for which (5.5) holds. Let u,, be any vector for which

3 (C-'A) ' t = 0 (5.16)

and set u, = C-'Au+, = (C-IA)-Ju, j = ic-1,...,0. Since (5.16) implies that A(C-A)uK= 0 it follows that

I Auo = 0. Hence altogether we have the equations

Auo = 0, Cuj = Auj+,, j = 0,...,K-1, (5.17)

and, conversely, (5.16) holds whenever uo, • • • , u. solves (5.17). Now, by (5.6), the condition (5.16) implies

that uo = (C-tA),u = 0 for every solution uo, , u, of (5.17). This implication is not true when ix is

3 replaced by any smaller integer as is easily seen when taking I < K and choosing ul e ker C' +1 not in ker C':

In fact, the family uj = C-'Auj,, j = 1-1, . • , 0 obviously satisfes Auo = 0, Cua - Auj,.

3 j -0, ,I-l, but uo * 0 since u is not in ker (C-'A)'.

Thus, at this stage, we know that K is the smallest integer for which existence of the solution

uo, , u, of (5.17) implies that uo = 0. Given arbitrary vectors uo, , u, in R, define

I
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vo = u, = (-)u , = 1, , . (5.18) I
With C = B + kA, a straightforward induction argument now shows that if uo, , u, solve (5.17),

then

Av o = O , Bv1 = Avj , =, . K-1 (5.19) I

Conversely, if v0, , v, solve (5.19), then the relation (5.18) may be inverted to produce a solution

UO, , u, of (5.17). In fact, we have

j-l I
Uo = Vo, Uj= vj..i ,j~ K'

It then clearly follows that K is the smallest integer for which existence of a solution vo, , v of (5.19) U
implies that vo = 0, whence k = K-1 by definition of k.

Conversely, suppose now that k < -. Then, our theory ensures that (5.1) has at most one C2-solution for

each prescribed initial condition. In particular, this holds for the homogeneous problem I

Ax' + Bx = 0, x(to) = 0. (5.20)

But then the pencil (A, B) must be regular because, otherwise, the system (5.20) has infinitely many C"-

solutions (see e.g. [41). I
The case K = 1 was noted already in [4], but the general result appears to be new.

6. Nonlinear Problems with Higher Index

As shown in the previous section, for the linear problems (5.1) the sufficient condition (2.23) is equivalent I

with the statement that the pencil (A, B ) is regular with index one. The discussion in that section sgests that

we may proceed analogously when, for the general (autonomous) problem I

F(x,x')=-, (6.1) I

the condition (2.12) does not hold but F is of class C', m > 3.

I
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The first step in the construction of a sequence of problems corresponding to (5.9a/b) was already done in

Section 2 when F was only C2 . In fact, we differentiated (6.1) and then applied the projections P and Q to

obtain the new problem (2.9); that is,

G(x, x') - P(x. x')F(x, x') + Q(x, x')DF(x, x')x = 0. (6.2)

3 Our sufficient condition (2.12) is exactly that D G(x,p) is invertible at the given point

(xo, Po) e F-'(0) n G-1(0), and hence that, by the implicit function theorem, (6.2) can be transformed locally

I into an explicit ODE.

l If this sufficient condition does not hold, then, as in Section 5, it would now be natural to set FO a F,

F1 = G and, to construct recursively the sequence of mappings

I Fl+'(x, p) = Pj(x, p)Fj(x, p) + Qj(x, p)D.FJ(x, p), j = 0,, . (6.3)

where Pj again is the orthogonal projection onto rge D, Fj and Qj = I. - Pi. Formally, the process is repeated

until the sufficient condition (2.12) is satisfied for F*; that is, until DFk+t(x, p) is invertible at the point under

I consideration.

5 As before, one might consider calling the integer k+l the local index of the problem at the particular

point. However, the situation differs here in a critical way. Indeed, the very definition of the iterate Fj +'

3 assumes some smoothness of its predecessor Fj and of the projections Pj and Qj. But Pj and Qj cannot even

be continuous at (xo, po) unless rank DFJ (x,p) is locally constant near (xopo) (in general, continuity of a

Iparametrized family in L (R ̂ ) does not require constancy of the rank, but it does for projections). The validity

of such a condition for j = 0, • • • , k is then a necessary prerequisite to iterating the procedure as outlined

above. This is not a restriction in the linear case with constant coefficients of the previous section because each

FJ involves matrices independent of (x, p).

Conversely. it is easily seen that the constant rank condition near (xo, Pa) implies that only one degree of

regularity is lost when passing from F to Fj +', and hence that F e C^. m > k+2, suffices to ensure that F&It

3 is C'. It thus appears that aside from sufficient smoothness, the constant rank condition near (xo, po) is the cru-

cil ingredient needed for the definition of a local index. Clearly. in general, local constancy of the rank cannot

be captured by a finite list of requirements about F and its derivatives at the point (zo, po) alone, even locally,
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it is a condition of a global nature. I
Now, consider a problem with local index k+l near (x0 , po). If so, a C 2-solution to (6.1) may pass

through (xo, po) only if Fj(xo, po) = 0, j = 0, • • • , k+l. As DPF*+l(xo, po) e Isom (R") by hypothesis, the

problem Fk+l(x, x') = 0, x(to) x 0, x'(to) = Po, may be made into an explicit ODE for which the solution, is

necessarily C
2 if F E C' , m >k+2, and is readily seen to solve FI(x, x') = 0, j = k, • • • , O, by recursive

application of Lemma 2.2. In sharp contrast, nonexistence of a local index because of failure of the constant

rank condition for some iterate F' leads to a singular ODE for which the existence (and uniqueness) theory I
should be expected to be considerably different from standard explicit ODE theory in view of the results in [5].

In the hypothesis of the existence of a global index; that is, of the same local index k+1 near each point

of the domain of definition E of F, the global results of Section 3, corresponding to the case k = 0, remain

valid since any solution of (6.1) is one of Fk(x, x') = 0, a problem of global index 1. Finally, it should be

mentioned that problems of arbitrary index k+1 also reduce (locally) to explicit ODE's on manifolds, at least

under mild additional assumptions such as surjcctivity of the total derivatives DFj (x, p), j = 0, • , k. The

effect of a higher index is merely to shrink the dimension of the underlying manifold: In fact, with r = rank

DpF(x,p), rj = rank D.FI(x,p), j = 1, ''' ,k, we can show that the relevant manifold has dimension

r t + "'" + r, + r - kn (compare with Section 4 when k = 0). Since this dimension must be nonnegative and

r, r1 , • • • , rk < n-I, one infers that, generically, the index k+1 cannot exceed n. In the linear case with con-

stant coefficients, this result follows from Theorem 5.1 and 5 < n. This example (via the results in [4]) also

shows that the existence and uniqueness theory for problems where the iterates Fj are defined beyond j = n

may differ significantly from standard ODE theory. A somewhat formal definition of the index in ternis of man-

ifolds and related in its spirit to the above remarks is given in [6].

As an example when the constant-rank condition remains valid for the iterated maps F' we consider here I
the classical pendulum problem. A pendulum with mass m attached at the end of a rigid massless wire with

length I attached at the origin in the plane (x1 , x2) satisfies the second-order DAE

-mil = -Xt (6.4)
1i2 = - X 2 - Mg ,l~
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where X is the (unknown) tension of the wire and g is the gravity constant.

U In order to reduce the problem to a first order DAE we introduce the new variables x 3  i ,l and x 4 =-i2

and write x5 = im. Then, the problem assumes the form (6.1) with x = (x I, x5) e Rs,

P = (P , P)E R'and

X + X 2 -1

P1 -X3

F(x, p) = P 2 - X4 (6.5)

P3 + X1X53 P4+ X2X5 + g

Evidently, if e1 ... ,e5 denote the standard basis vectors of R5 then rge DpF(x,p)= span (e,j =2,..,5.

Hence the conditions (2.2a/b) are satisfied and the orthogonal projections P, Q onto rge DF(x, p) and its

complement, respectively, are independent of (x, p). A straightforward calculation shows that the mapping

I F'in G of (6.2) has the form

3 tPI + 2X2P2

P1 - X3

F'(x, p) =  P2 -X4 (6.6)

P3 + X1 X5

P4 + X2X 5 + g

I It is easily checked that DpF 1(x, p) has the constant rank 4 and hence is not invertible. In other words, the

sufficient condition (2.12) does not hold for the pendulum problem. But since F1 does indeed satisfy again the

constant rank condition, we may proceed.

I With z(x)=(l,-2x1 ,-2x 2,,0)T the orthogonal projection onto [rge DF(xp)? is the rank-one

matrix QI(X) = z(X)Z(x)T/Iz(X)Tz(x). Since with QI also P =1 - Q1 depends only on x it follows that

DpF 2(x, p)u = PI(x)DF'(x, p)u + Q(x)D [D.F'(x, p)p]u . (6.7)

I Thus we have u e ker DF 2(x,p) if and only if both terms on the right side of (6.7) are zero. Since

3 PtD, Ft =DF it follows that dim ker D.F 2(x,p)S dim ker D.F1(x,p)f= 1. Now a short calculation

shows that D.F 2(x, p)es = 0 and therefore that rank DeF 2(x, p) = 4.

3 In order to check whether the sufficient condition (2.12) holds for F2 that is, whether DF 3(x, p) maps

I
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onto R 5  Ict u = te 5  E ker D.F 2(x, p). Then D 2 F w 0, and

D,,[DF'(x, p)p ](u, q) = (4q uI + 4qu 2, 0, 0,, 0)r from the explicit calculation of D, F1(x,p)p whence, I
because of ker D, 1F,(x, p) = span (e5 } we have D,p F2(x, p)(q, es) = 0. Since Ql(x)es a 0, we have

DQ,(x)e5 = 0 and DP (x)e =-DQ I(x)e 5 = 0. Moreover, one also finds Q,(x)D.,p ,D.,F'(x, p)pI(p, e5)= 0.

Thus altogether,

D' F 2(x, p pU) = P,(x)D 2 Fl(x, p)(p,u) = 0,

because D,,,Fl(x, p)(p, e5 ) = 0 as a result of DPF'(x, p)es 0 0. Similarly, we have

D.F 2(x, p)u =Pj(x)DF'(x,p)u =DF'(x,p)u because D,F1(x,p)e5
= (0, 0, 0, x1, x2)T a v(x) and hence

Q,(x)v(x) = 0.

Thus in this case the sufficient condition (2.12) for F 2  simply requires that when I
av(x) e rge DF2(x, p) then cc = 0. Since the two terms on the right of (6.7) are complementary and

Ql(x)v(x) = 0 this means that the equations DpFl(x, p)q = av(x) and Qt(x)DP[DF(x, p)p]q = 0 only have

a solution q when cc = 0. In fact, the first of these equations amounts to q, = q2 = 0, q3 = oxI, and q4 = ax 2, 3
while from the second equations it follows that q3 = q4 = 0. Hence, for (xj, x2) * (0, 0) we indeed have a = 0

as desired.

Because F1 and F 2 satisfy the constant-rank condition, the existence and uniqueness results apply for 3
every initial condition (x0, P0) e R5 satisfying F'(xo, Po) = 0, j = 0, • • • , 3 since (xo,, x02) * (0, 0) from

F(xo, Pa) = 0 (see (6.5)). Moreover, here we may indeed say that the problem has global index three since the 3
condition (x I, x 2) * (0, 0) is not a restriction along and hence near the solutions of (6.4). I
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